İzmit Kocaeli Forum
11 Temmuz 2014, 07:09:40 *
Hoşgeldiniz, Ziyaretçi.Lütfen giriş yapın veya kayıt olun.

Kullanıcı adınızı, parolanızı ve aktif kalma süresini giriniz
Duyurular:
 
   Ana Sayfa   Yardım Ara Takvim Giriş Yap Kayıt  
Sayfa: [1]   Aşağı git
  Bu Konuyu Gönder  |  Yazdır  
Gönderen Konu: •Matematik Dersi - Olasılık nedir - Olasılık Terimleri - Olasılık Fonsiyonu  (Okunma Sayısı 28433 defa)
0 Üye ve 1 Ziyaretçi konuyu incelemekte.
ali__can
GeNc Üye
*

Karma 1
Çevrimdışı Çevrimdışı

Mesaj Sayısı: 0



« : 15 Nisan 2008, 18:08:13 »

A. OLASILIK TERİMLERİ
1. Deney
Bir madeni para atıldığında yazı mı ya da tura mı geleceğini, bir zar atıldığında sonucun ne olacağını, tespit etme işlemidir.
2. Sonuç
Bir deneyin her bir görüntüsüne (çıktısına) verilen isimdir. Her bir sonuç bir örnek nokta olarak da adlandırılır.

OLASILIK

 

A. OLASILIK TERİMLERİ

1. Deney

Bir madeni para atıldığında yazı mı ya da tura mı geleceğini, bir zar atıldığında sonucun ne olacağını, tespit etme işlemidir.

1. Deney

Bir madeni para atıldığında yazı mı ya da tura mı geleceğini, bir zar atıldığında sonucun ne olacağını, tespit etme işlemidir.

Bir madeni para atıldığında yazı mı ya da tura mı geleceğini, bir zar atıldığında sonucun ne olacağını, tespit etme işlemidir.

2. Sonuç

Bir deneyin her bir görüntüsüne (çıktısına) verilen isimdir. Her bir sonuç bir örnek nokta olarak da adlandırılır.

Bir deneyin her bir görüntüsüne (çıktısına) verilen isimdir. Her bir sonuç bir örnek nokta olarak da adlandırılır.

3. Örnek Uzay

Bir deneyin bütün sonuçlarını eleman kabul eden kümedir. Diğer bir ifadeyle örnek noktaların tamamını eleman kabul eden kümedir. (Örnek uzaya evrensel küme de denir.) Örnek uzay genellikle E ile gösterilir.

Bir deneyin bütün sonuçlarını eleman kabul eden kümedir. Diğer bir ifadeyle örnek noktaların tamamını eleman kabul eden kümedir. (Örnek uzaya evrensel küme de denir.) Örnek uzay genellikle E ile gösterilir.

4. Olay

Bir örnek uzayın her bir alt kümesine verilen isimdir.

Bir örnek uzayın her bir alt kümesine verilen isimdir.

5. İmkansız Olay

E örnek uzayı için boş kümeye imkansız (olanaksız) olay denir.

E örnek uzayı için boş kümeye imkansız (olanaksız) olay denir.

6. Kesin Olay

E örnek uzayına kesin (mutlak) olay denir.

E örnek uzayına kesin (mutlak) olay denir.

7. Ayrık Olaylar

A ve B, E örnek uzayına ait iki olay olsun.

A Ç B = Æ ise A ve B olaylarına ayrık olaylar denir.

 

B. OLASILIK FONKSİYONU

E örnek uzayının tüm alt kümelerinin oluşturduğu küme K olsun.

P : K ® [0, 1]

şeklinde tanımlanan P fonksiyonuna olasılık fonksiyonu denir. A Î K ise P(A) reel sayısına A olayının olasılığı adı verilir.

P fonksiyonu aşağıdaki koşulları sağlar.

1. Her A Î K için, 0 £ P(A) £ 1 dir.

2. Evrensel kümenin meydana gelme olasılığı, P(E) = 1 dir.

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

A ve B, E örnek uzayına ait iki olay olsun.

A Ç B = Æ ise A ve B olaylarına ayrık olaylar denir.

 

B. OLASILIK FONKSİYONU

E örnek uzayının tüm alt kümelerinin oluşturduğu küme K olsun.

P : K ® [0, 1]

şeklinde tanımlanan P fonksiyonuna olasılık fonksiyonu denir. A Î K ise P(A) reel sayısına A olayının olasılığı adı verilir.

P fonksiyonu aşağıdaki koşulları sağlar.

1. Her A Î K için, 0 £ P(A) £ 1 dir.

2. Evrensel kümenin meydana gelme olasılığı, P(E) = 1 dir.

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

A Ç B = Æ ise A ve B olaylarına ayrık olaylar denir.

 

B. OLASILIK FONKSİYONU

E örnek uzayının tüm alt kümelerinin oluşturduğu küme K olsun.

P : K ® [0, 1]

şeklinde tanımlanan P fonksiyonuna olasılık fonksiyonu denir. A Î K ise P(A) reel sayısına A olayının olasılığı adı verilir.

P fonksiyonu aşağıdaki koşulları sağlar.

1. Her A Î K için, 0 £ P(A) £ 1 dir.

2. Evrensel kümenin meydana gelme olasılığı, P(E) = 1 dir.

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

E örnek uzayının tüm alt kümelerinin oluşturduğu küme K olsun.

P : K ® [0, 1]

şeklinde tanımlanan P fonksiyonuna olasılık fonksiyonu denir. A Î K ise P(A) reel sayısına A olayının olasılığı adı verilir.

P fonksiyonu aşağıdaki koşulları sağlar.

1. Her A Î K için, 0 £ P(A) £ 1 dir.

2. Evrensel kümenin meydana gelme olasılığı, P(E) = 1 dir.

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

P : K ® [0, 1]

şeklinde tanımlanan P fonksiyonuna olasılık fonksiyonu denir. A Î K ise P(A) reel sayısına A olayının olasılığı adı verilir.

P fonksiyonu aşağıdaki koşulları sağlar.

1. Her A Î K için, 0 £ P(A) £ 1 dir.

2. Evrensel kümenin meydana gelme olasılığı, P(E) = 1 dir.

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

2. Evrensel kümenin meydana gelme olasılığı, P(E) = 1 dir.

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

3. İmkansız olayların meydana gelme olasılığı P(Æ) = 0 dır.

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

4. A Î K, B Î K ve A Ç B = Æ ise, P(A È B) = P(A) + P(B) dir.

 

 

Kural

E örnek uzayında herhangi iki olay A ve B; A nın tümleyeni A' olsun. P olasılık fonksiyonu olmak üzere,

1. A Ì B ise P(A) £ P(B) dir.

2. P(A') = 1 – P(A) dır.

3. P(A È B) = P(A) + P(B) – P(A Ç B) dir.

2. P(A') = 1 – P(A) dır.

3. P(A È B) = P(A) + P(B) – P(A Ç B) dir.

3. P(A È B) = P(A) + P(B) – P(A Ç B) dir.

 

 

C. EŞ OLUMLU ÖRNEK UZAY

Sonlu bir E = {e1, e2, e3, ... , en} örnek uzayı için,

      P(e1) = P(e2) = P(e3) = ... = P(en)

ise E örnek uzayına eş olumlu örnek uzay denir.

E, eş olumlu örnek uzayı ve A Î E ise A olayının olasılığı,

     

dır.

 
C. EŞ OLUMLU ÖRNEK UZAY

Sonlu bir E = {e1, e2, e3, ... , en} örnek uzayı için,

      P(e1) = P(e2) = P(e3) = ... = P(en)

ise E örnek uzayına eş olumlu örnek uzay denir.

E, eş olumlu örnek uzayı ve A Î E ise A olayının olasılığı,

     

dır.

 
Sonlu bir E = {e1, e2, e3, ... , en} örnek uzayı için,

      P(e1) = P(e2) = P(e3) = ... = P(en)

ise E örnek uzayına eş olumlu örnek uzay denir.

E, eş olumlu örnek uzayı ve A Î E ise A olayının olasılığı,

     

dır.

 

Kural

n, paranın atılma sayısını veya para sayısını göstermek üzere, bu deneyde örnek uzay 2n elemanlıdır.

 

 

D. BAĞIMSIZ OLAYLAR VE BAĞIMLI OLAYLAR

A ve B aynı örnek uzayına ait olaylar olsun. Bu olaylardan birinin elde edilmesi diğerinin elde edilmesini etkilemiyorsa A ve B olaylarına bağımsız olaylar denir. Eğer iki olay bağımsız değilse, bu olaylara birbirlerine bağımlıdır denir.

 

A ve B aynı örnek uzayına ait olaylar olsun. Bu olaylardan birinin elde edilmesi diğerinin elde edilmesini etkilemiyorsa A ve B olaylarına bağımsız olaylar denir. Eğer iki olay bağımsız değilse, bu olaylara birbirlerine bağımlıdır denir.

 

 

Kural

A ve B bağımsız olaylar olmak koşuluyla

      P(A) ¹ 0 ve P(B) ¹ 0 ise,

A nın ve B nin gerçekleşme olasılığı

      P(A Ç B) = P(A) × P(B) dir.

A nın veya B nin gerçekleşme olasılığı

      P(A È B) = P(A) + P(B) – P(A Ç B) dir.

      P(A Ç B) = P(A) × P(B) dir.

A nın veya B nin gerçekleşme olasılığı

      P(A È B) = P(A) + P(B) – P(A Ç B) dir.

      P(A È B) = P(A) + P(B) – P(A Ç B) dir.

 

 

E. KOŞULLU OLASILIK

A ile B, E örnek uzayında iki olay olsun. P(B) > 0 olmak üzere; B olayının gerçekleşmiş olması halinde A olayının olasılığına, A olayının B olayına bağlı koşullu olasılığı veya kısaca A nın B koşullu olasılığı denir ve P(A / B) şeklinde gösterilir.

E. KOŞULLU OLASILIK

A ile B, E örnek uzayında iki olay olsun. P(B) > 0 olmak üzere; B olayının gerçekleşmiş olması halinde A olayının olasılığına, A olayının B olayına bağlı koşullu olasılığı veya kısaca A nın B koşullu olasılığı denir ve P(A / B) şeklinde gösterilir.

A ile B, E örnek uzayında iki olay olsun. P(B) > 0 olmak üzere; B olayının gerçekleşmiş olması halinde A olayının olasılığına, A olayının B olayına bağlı koşullu olasılığı veya kısaca A nın B koşullu olasılığı denir ve P(A / B) şeklinde gösterilir.
Kayıtlı
Sayfa: [1]   Yukarı git
  Bu Konuyu Gönder  |  Yazdır  
 
Gitmek istediğiniz yer:  

MySQL Kullanıyor PHP Kullanıyor Powered by SMF 1.1.16 | SMF © 2011, Simple Machines XHTML 1.0 Uyumlu! CSS Uyumlu!